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a b s t r a c t

A multielemental analytical method has been proposed to determine the contents of Al, B, Ca, Cu, Fe, K,
Mg, Mn, Na, Ni, P, Pb, Sr and Zn in paprika samples from the two Protected Designations of Origin
recognized in Spain, such as Murcia and La Vera (Extremadura). The samples are mineralized by acid wet
digestion using a mixture of perchloric and nitric acids and analyzed by means of inductively coupled
plasma atomic emission spectroscopy. The method performance has been checked studying the absence
of matrix effect, trueness, precision, linearity, limit of detection and limit of quantification. The proposed
method has been applied to analyze samples of sweet, hot and hot/sweet paprika from the considered
production areas. Differences between paprika samples from Murcia and Extremadura were found and
pattern recognition methods, such as linear discriminant analysis, linear support vector machines, soft
independent modeling of class analogy and multilayer perceptrons artificial neural networks, has been
used to obtain classification models. Sweet and hot/sweet paprika types were differentiated by means of
linear models and hot paprika was differentiated by using artificial neural networks. A model based on
artificial neural networks is proposed to differentiate the geographical origin of paprika, with
independence of the type, leading to an overall classification performance of 99%.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Paprika is a red powder made from grinding the dried pepper
pods of some varieties of Capsicum annuum L. [1]. This natural food
product is commonly used as spice and natural colorant in cookery
and to provide redness to meat products and commercial sauces
[2]. There are different types of paprika according to its pungency,
named sweet, sweet/hot and hot. This variety of tastes makes this
product very common in different traditional cuisines. The ade-
quate consumption of pepper fruits is also related to potential
health effects due to the presence of antioxidant compounds [3].
Although paprika is original from America, it is also produced in
Europe, particularly in Hungary, Turkey and Spain. In Spain,
paprika is called “pimentón” and it is cultivated and produced in
two main areas namely Murcia and La Vera [4]. Paprika from both
regions is recognized under Protected Designation of Origin (PDO)
by the European Commission of Agriculture and Rural Develop-
ment [5], being these products of great importance for the local
economies. The production region of the paprika protected by La
Vera PDO is located in the centre-west of Spain. This PDO includes

some towns of the province of Cáceres in the region of Extrema-
dura. La Vera PDO uses peppers belonging to the variety Bola and
Ocales from the species C. annuum L. and C. longum L., respectively
[6]. The other pepper growing region which is currently protected
under the Murcia PDO comprises the homonymous region, located
to the south east of Spain. In this case, the peppers used belong to
the variety Bola from C. annuum L. [7].

Nowadays, consumers relate quality of foodstuff to certain
characteristics influenced by the production areas, the harvesting
practices and the raw materials. For this reason, it is of great
importance the development of suitable methodologies allowing
the characterization of different products. Within this context,
several studies have been focused on the compositional profiling
of paprika samples. Mateo et al. [4] identified volatile compounds
influencing the overall flavor of paprika from La Vera, whilst
volatile composition of paprika from Murcia has been studied by
Guadayol et al. [8]. Kocsis et al. [9] researched on the volatile
component composition of Hungarian red paprika as an important
parameter of quality and identity. Due to the use of red paprika as
a source of pigments to enhance or change food color, the study of
constituents related to this characteristics, such as carotenoids, is
valuable. In fact, color is used as a parameter to monitoring the
quality changes during the elaboration or storage process. Tech-
niques based on the spectrophotometric measurement of color
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and HPLC separation with UV–vis detection have been developed
aiming this purpose [10,11]. On the other hand, antioxidant activity
attributed to paprika powder is mainly related to the presence of
polyphenols and several authors consider these compounds as useful
variables to characterize paprika [3,11]. Metals have been also used to
characterize paprika. The content of Cu, Fe, Mn, K and Na, determined
by absorption and emission flame atomic spectrometry, has been used
to characterize paprika samples cultivated in Venezuela [12]. Arc
atomic emission spectrometry has been also used to determine B, P,
Fe, Mg, Si, Mn, Al, Ca and Cu with the aim to differentiate parts of the
paprika plant [13]. Multielemental profile, determined by inductively
coupled plasma-mass spectrometry (ICP-MS) has been used to estab-
lish the authenticity of Hungarian paprika Szegedi Füszerpaprika
(PDO) bymeans of pattern recognition techniques [14]. Trace elements
are important parameters for establishing the PDO of foods by using
appropriate chemometric data. In this realm, ICP-MS and inductively
coupled plasma optical emission spectrometry (ICP-OES) are powerful
analytical tools due to their low detection limits and feasibility to
perform multicomponent determinations in a relatively short time.
Gonzalvez et al. [15] and Jakubowski et al. [16] have reviewed the
usefulness of these techniques to authenticate the origin of food
matrices, including vegetable-type products.

Spanish paprika from La Vera and Murcia PDO has not been yet
characterized according to their elemental composition. The metal
content in paprika could be influenced by different factors such as
the level of these elements in soil, fertilizing practices and the
processing conditions and some differences are expected between
these two PDOs. The presence of some major elements such as Ca,
K, Mg, P, Al, Fe and Na in vegetable-type products is highly related
to those factors. These elements are valuable chemical descriptors
to perform the geographic differentiation of tea, coffee and other
food products [15–18]. Consequently, it could be expected that
these elements would be useful for paprika geographical differ-
entiation. Other minor constituents, such as B, Cu, Mn, Ni, Pb, Sr
or Zn, are also influenced by geographical factors and could be
relevant to obtain classification models [17,18].

The main objectives of this work are the development and
validation of a multielemental analytical method to determine the
mineral content of paprika samples and the use of that chemical
information to obtain adequate classification models to authenticate
PDO Spanish paprika samples. Accordingly, an ICP-OES method has
been proposed and the contents of Al, B, Ca, Cu, Fe, K, Mg, Mn, Na, Ni,
P, Pb, Sr and Zn have been determined in sweet, sweet/hot and hot
paprika from the two Spanish PDOs. In order to differentiate the
geographical origin of the considered paprika samples, pattern recog-
nition techniques such as principal component analysis (PCA), linear
discriminant analysis (LDA), support vector machines (SVM), soft
independent modeling of class analogy (SIMCA) and multilayer
perceptron artificial neural networks (MLP-ANN) have been applied.

2. Materials and methods

2.1. Chemicals and reagents

Nitric (65%), sulfuric (96%), perchloric (60%) acids and hydrogen
peroxide (30%) were used in the mineralization of samples. All
of them were of analytical grade and obtained from Merck
(Darmstadt, Germany). Standard solutions of 1000 mg l�1 (Merck)
were used to prepare working solutions. Ultrapure water (Milli-Q,
Millipore, Bedford, MA) was used throughout.

2.2. Samples

Samples of paprika belonging to two different origins: La Vera
(Extremadura) (n¼72) and Murcia (n¼72) were obtained from

local stores. Within these classes there are three different types
of paprika: sweet, hot/sweet and hot, being 24 the number of
samples of each pair of type-origin.

2.3. Apparatus and methods

ICP-OES analysis was performed using an ULTIMA 2 atomic
emission spectrometer (Horiba Jobin Yvon, Kyoto, Japan). The ICP
operating conditions are shown in the electronic Supplementary
material (Table S1).

Three mixtures of acids were tested to carry out wet ashing
mineralization of paprika samples: M1 (2 ml of H2SO4 and 15 ml of
HNO3), M2 (5 ml of H2O2 and 20 ml of HNO3) and M3 (2 ml of
HClO4 and 20 ml of HNO3). The acids were gradually added to 1 g
of paprika (weighted with precision of 0.1 mg) placed in a beaker
and the mixture was heated till complete mineralization. All
obtained solutions were cooled to room temperature, filtered
(0.45 mm) and transferred to 50 ml volumetric flasks. Adequate
blanks were prepared for each method.

2.4. Chemometrics

A data matrix consisting of 14 columns (the determined elements)
and 144 rows (the paprika samples) was created for the chemometrics
calculations. Two-way nested analysis of variance (ANOVA) was used
to compare recoveries of the mineralization methods. Non-parametric
comparison test such as Kruskal–Wallis and Mann–Whitney tests
were applied in order to draw attention to significant difference in
elemental content between the paprika types and origins, respectively.
PCA was used to visualize data trends and to get a first evaluation
of the discriminant power of the variables. LDA, SVM, SIMCA andMLP-
ANN were applied to obtain classification models. The STATISTICA
8.0 software package (StatSoft, 2007) was used for the statistical
analysis.

3. Results and discussion

3.1. Methods comparison

Three mineralization methods were proposed with the aim of
determining metals in paprika samples by means of ICP-OES. In
order to compare among the selected methods of mineralization,
and taking into account that there are no CRMs available for the
trueness study, recovery assays with spiked samples was carried
out [19]. A control sample was prepared by mixing paprika
samples from each considered origin and type. This control sample
was used to prepare the spiked samples at the expected concen-
trations for each element [20]. The control sample was miner-
alized according to the method i, fortified in j levels and analyzed
in k replicates. The corresponding elemental recovery of each ijk
value, Rijk, was obtaided. A two-way nested ANOVAwas performed
for each element. The fortification level was nested in the oxidant
mixture used for digestion. Variance due to the factor oxidant
mixture was compared with pure error variance and Tukey-HSD
post-hoc analysis [21] was used to detect the methods responsible
of bias. The obtained results are shown in Table 1. There are
significant differences for many of the determined elements for
at least a pair of methods. The three methods are equivalent in
the case of B, Ca, K, Mn and Ni. There are significant differences
between all the possible comparisons for Sr. For the remaining
elements one of the methods differs for the other two, except for
Na and P, which only shows differences in the recoveries obtained
by M1 and M2. In order to select the best mineralization method,
the uncertainty associated to each method, uðRiÞ, was evaluated
and their recoveries statistically compared to 100. The uncertainty
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corresponding to ðRiÞ values is computed from two terms, com-
bined uncertainty and pure repetition uncertainty [19]. Uncertain-
ties (u) are converted to expanded one (U) multiplying by a
coverage factor k¼2 [22]. Recoveries can be considered free from
bias when the inequality jRi�100jrUðRiÞ holds true. As can be
seen in Table 2 mixture M3 leads to recoveries whose confidence
interval includes the 100% for all the elements. In addition, the
uncertainties of M3 are generally lower than those of M1 and M2.

Furthermore, there are some practical considerations to take
into account to select the oxidant mixture to be used for paprika
mineralization. The presence of high concentrations of acids
during the measurement could lead to a decrease of sensitivity
due to the higher viscosity of the solution. For this reason an
evaporation step is needed in order to eliminate the excess of
acids. The vapor pressure of sulfuric acid is very low in comparison
to those for perchloric acid, nitric acid and hydrogen peroxide
aqueous solutions. This means that the elimination of sulfuric acid
requires higher temperatures and longer heating times. In addition
the mixture of nitric and sulfuric acids may yield a precipitate of
compounds like lead sulfate. Perchloric acid may react explosively
with organic compounds but it can be used safely after a first
action of nitric acid. When hydrogen peroxide is used, longer

heating time and higher volume is needed to mineralize the
samples. Therefore, from recovery assays results and practical
considerations, the mixture of nitric and perchlroic acids was
selected to carry out the mineralization of paprika samples.

3.2. Analytical performance

The performance characteristic of the method, such as presence
of matrix effect, trueness, repeatability, intermediate precision,
linearity, limit of detection (LOD) and limit of quantification (LOQ)
were evaluated.

The presence of matrix effect was studied by comparing
external calibration and standard addition calibration. In absence
of matrix effect the ratio (R) of the slopes of external calibration
(bEC) and standard addition method (bSAM) must be equal to 1. This
can be checked statistically by means of t-student test [23].
The computed t-value was compared with the tabulated one for
α¼0.05 and the effective degrees of freedom of the standard
deviation of R, calculated according to the Welch–Satterthwaite
expression [24]. According to the results obtained (Table S2) no
matrix effect was found for any of the studied elements.

Trueness of the method was evaluated by means of recovery
assays. As can be seen in Table 2 recoveries obtained with the
selected M3 method are statistically equal to 100%, and accord-
ingly, the trueness is assured.

Precision was evaluated for all the determined elements by
analyzing in triplicate the control sample in repeatability and
intermediate precision conditions. One-way ANOVA calculations
were used to obtain the relative standard deviation of repeatability
and intermediate precision from within-condition variance and
between-condition (between-days) variance, respectively [23].
Results, expressed as relative standard deviation (RSD), are shown
in Table 3. Repeatability varied from 0.72% and 10.21% and
intermediate precision from 1.17% to 11.43%. These results are in
accordance to those obtained by using the Horwitz function [25]
depending on the analyte level.

Linearity of the calibration range was computed from the exter-
nal calibration parameters as 100(1�sbEC/bEC) [26]. As can be seen
in Table 3 linearity for all the elements is higher than 95%.

Limit of detection (LOD) and limit of quantification (LOQ) for
each element were obtained from repeated measurements of a
sample blank. LOD and LOQ were calculated as the concentration

Table 1
Two-way nested ANOVA results for method comparison.

ANOVA calculations Result of post hoc analysis

Element S2method S2rep Fexp M1–M2 M1–M3 M3–M2

Al 27.4 5.8 4.72
B 139.7 96 1.46
Ca 42.7 59 0.72
Cu 162.4 8.5 19.11

Fe 1423 24.6 57.85
K 3.6 9.4 0.38
Mg 193.8 6.6 29.36
Mn 108.9 74.4 1.46
Na 558.4 5.8 96.28
Ni 74.4 85.6 0.87
P 88.3 21.7 4.07
Pb 270.6 15.1 17.92

Sr 489.5 16.9 28.96

Zn 815.6 123.5 6.6

S2method, variance due to use of different oxidant mixtures; S2pe, pure error variance;
F(0.05,2,18)¼3.55.

Table 2
Recoveries and expanded uncertainties obtained for the studied elements for the
compared mineralization methods.

Element Recovery, %

RM17UðRM1Þ RM27UðRM2Þ RM37UðRM3Þ

Al 9974 10275 9971
B 98713 104715 9773
Ca 102715 103711 9972
Cu 9176 8978 9773
Fe 8276 106714 10173
K 10074 101710 10072
Mg 10876 10075 10172
Mn 93723 91711 9874
Na 9875 84711 9873
Ni 93717 93715 9874
P 96710 10278 10071
Pb 9078 92713 10173
Sr 92714 8279 9773
Zn 110713 114724 9674

M1, H2SO4/HNO3; M2, HNO3/H2O2; M3, HNO3/HClO4.

Table 3
Repeatability, intermediate precision, linearity, limit of detection and limit of
quantification obtained for the analyzed elements.

Element RSDrepeat (%) RSDip (%) % L LODa (mg kg�1) LOQa (mg kg�1)

Al 0.88 1.86 98.8 0.1 0.35
B 6.37 8.38 96.78 3.2 10.5
Ca 2.44 3.50 99.1 0.1 0.35
Cu 3.07 3.97 99.0 0.45 1.5
Fe 2.25 3.89 98.87 0.05 0.15
K 2.10 2.79 98.6 2.25 7.5
Mg 2.04 3.16 95.3 0.05 0.15
Mn 8.26 11.43 97.2 0.05 0.15
Na 4.34 4.69 98.4 0.4 1.35
Ni 7.93 10.00 98.7 0.3 1
P 0.72 1.17 99.1 0.55 1.85
Pb 4.19 4.74 96.9 0.4 1.5
Sr 1.57 8.30 98.4 0.05 0.15
Zn 10.21 11.69 98.3 0.05 0.15

RSDrepeat, repeatability; RSDIP, intermediate precision; % L, linearity; LOD, limit of
detection; LOQ, limit of quantification.

a Limits were estimated considering samples of 1 g of paprika and a sample
volume of 50 ml.
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corresponding to a signal 3 and 10 times the standard deviation of
the blank, respectively. LODs vary in the range 0.05–3.2 mg kg�1.
Fe, Mg and Mn present the lowest values (0.05 mg kg�1) and B
and K present values of 3.2 and 2.25 mg kg�1, respectively.
The same pattern is obtained for LOQ, ranging from 0.15 to
10.5 mg kg�1.

3.3. Mineral content of paprika

Paprika samples were analyzed by triplicate and their mineral
content was determined. Table 4 summarizes the median value
and range for samples of sweet, hot and hot/sweet paprika from
the two considered origins. As can be seen, the most abundant
elements are K, P, Mg and Ca, with mean contents of 14908, 3558,
2117 and 1866 mg kg�1, respectively. The ranges observed for Na,
Fe and Al are 155–948, 84–418 and 26–276 mg kg�1, respec-
tively. The mean contents of B, Cu, Mn, Sr and Zn range from
12.3 mg kg�1 for B to 36.0 mg kg�1 in the case of Zn. Ni and Pb
present mean contents of 0.95 and 1.81 mg kg�1, respectively.
These contents are in accordance to those found by Brunner et al.
for several European paprika samples [14]. Sweet/hot variety from
Murcia presents the lowest median contents of Al (42 mg kg�1),
B (7.9 mg kg�1), Ca (1494 mg kg�1), Fe (106 mg kg�1), mg
(1785 mg kg�1) and Mn (10.2 mg kg�1). The highest median
contents of Cu (20.3 mg kg�1), Sr (29.8 mg kg�1) and Zn
(43.3 mg kg�1) are found in sweet paprika from Murcia. The
lowest value for this last element (15.1 mg kg�1) is found for hot
Murcian paprika. The three varieties of paprika from Extremadura
present the lowest median concentrations in the case of Na (328–
377 mg kg�1) and Sr (8.7–9.4 mg kg�1), whilst Murcian paprika
ranges from 509 to 546 mg kg�1 and 12.2 to 29.8 mg kg�1,
respectively. The highest median content of Pb (1.12 mg kg�1) is
present in hot paprika from Extremadura. As some differences
can be glimpsed, a comprehensive statistical analysis has been
performed.

3.4. Geographical differentiation of paprika

The study to differentiate the geographic origin of Spanish
paprika has been carried out considering the three types sweet,
hot and hot/sweet. It is expectable finding out some differences
among these varieties or at least, an important variability within
the metal contents for each geographical origin due to this factor.
Variables with high variability involve noisy information in the
data set which can lead to bad performance of the classification
models. For this reason, Kruskal–Wallis multiple comparison
test [27] is applied to check differences between paprika types.

Significant differences between hot/sweet paprika and the other
two varieties are found for Al, B, Fe and Ni. Elements such as Ca,
Mn, Ni and Pb show significant differences between hot and hot/
sweet paprika. Sweet and hot/sweet paprika present statistical
differences in the case of P. Taking into account these results, it is
plausible to construct a classification model for each of the
considered types of paprika. Additionally, a global model has been
also built for comparison with those obtained for each paprika
type.

Initially, Mann–Whitney U-test [27] is performed to highlight
significant differences between paprika samples from the two
origins. Sweet paprika samples present significant differences
between their geographical origins in the case of Cu, Fe, Mn, Na,
P and Sr. In the case of hot paprika differences in the contents of
Al, Cu, Fe, Na, Pb and Sr were found. Concentrations of Al, Ca, Fe,
Mg, Mn, Na, Ni, P, Pb and Sr show differences for hot/sweet variety.
If the three varieties are considered overall, significant differences
are found for Cu, Mg, Mn, Na, P, Pb and Sr. In light of these
results, pattern recognition techniques are used to obtain adequate
classification models.

Data trends are studied by means of PCA, computing a number
of principal components (PCs) explaining as much variance as
possible of the original data and reducing the dimensionality of
the data matrix [28]. In the case of the global comparison, the
three first PCs explain the 64.7% of the original variance. PC1 is
highly correlated to the variables Al, B, Ca, Cu, Fe, Mn and Zn and
PC3 is correlated to Na content. No significant correlations were
found in the case of PC2. Fig. 1A shows the distribution of data in
the space formed by the three first PCs. Two groups of paprika
from Extremadura can be seen, one at negative values of PC1 and
positive of PC2 and other in the opposite quadrant. Murcian
paprika present dispersed PC2 scores and two groups are found
at positive and negative values of PC1. Most of samples from
Extremadura appear at positive values of PC3, whilst Murcian
paprika present negative PC3 scores (Fig. 1B). When the compar-
ison is performed considering sweet paprika, the three first PCs
account for the 64.0% of total variance. In this case Al, B, Ca, Cu and
Sr present high factor loadings for PC1, Fe is correlated to PC2 and
no significant correlations are found for PC3. Most of samples from
Extremadura appear at negative values of PC2 and positive values
of PC3, whilst samples from Murcia principally present positive
and negative scores for PC2 and PC3, respectively. In the case of
hot paprika, 71.3% of total variance is explained with the three first
PCs. Paprika samples from Extremadura are mostly distributed at
positive values of PC2 while samples from Murcia do at negative
values (Fig. 1C). The most contributing elements to PC1 are Al, Ca,
Cu, Fe, Mn and Zn. Na and P are highly correlated to PC2 and PC3,

Table 4
Median, minimum and maximum (in brackets) metal content in Spanish paprika. Concentrations expressed in mg kg�1 (dry weight).

Element MURCIA EXTREMADURA

Sweet Hot Hot/Sweet Sweet Hot Hot/Sweet

Al 140 (95–276) 136 (43–353) 42 (26–137) 132 (80–246) 117 (83–160) 128 (91–227)
B 14.2 (7.4–20.8) 12.2 (0.26–22.7) 7.9 (5.5–23.6) 14.8 (7.3–27.9) 13.5 (7.0–23.5) 10.5 (5.8–23.8)
Ca 1946 (1498–2442) 2191 (1012–2790) 1494 (1031–2174) 1895 (1063–2465) 2044 (833–2437) 1862 (1113–2422)
Cu 20.3 (9.3–22.2) 12.9 (9.1–22.6) 11.1 (9.2–22.6) 11.6 (6.0–20.0) 12.7 (7.4–20.6) 9.8 (6.5–20.7)
Fe 229 (183–403) 201 (123–418) 106 (85–264) 178 (84–295) 168 (123–236) 183 (150–247)
K 15687 (9169–20158) 14538 (9226–19765) 14387 (7691–17547) 14734 (11175–17581) 14261 (10640–23416) 15206 (10318–20213)
Mg 2012 (1758–2657) 2256 (1703–2718) 1785 (1642–2190) 2189 (1483–2461) 2174 (1867–2390) 2194 (1951–2346)
Mn 24.9 (10.7–35.8) 20.5 (12.3–53.1) 10.2 (9.1–27.7) 26.9 (19.7–97.6) 26.1 (15.3–55.6) 28.7 (19.1–68.5)
Na 509 (419–881) 441 (168–784) 546 (278–948) 328 (155–531) 333 (255–497) 377 (21–560)
Ni 0.93 (0.81–1.43) 1.06 (0.83–1.56) 0.61 (0.54–0.88) 1.00 (0.17–2.94) 1.00 (0.52–2.13) 1.02 (0.49–3.40)
P 3396 (3081–3575) 3555 (2685–4093) 3644 (3154–4226) 3613 (2499–4266) 3568 (3170–3950) 3619 (3263–4140)
Pb 0.49 (0.03–10.7) 0.40 (0.09–11.1) 0.10 (0.01–9.1) 0.40 (0.03–19.0) 1.12 (0.10–16.8) 0.42 (0.04–21.3)
Sr 29.8 (9.6–38.5) 15.1 (8.5–38.4) 12.2 (9.0–32.1) 8.7 (5.7–29.1) 9.4 (5.5–21.3) 9.2 (6.6–16.3)
Zn 43.3 (14.9–62.2) 15.1 (14.2–60.8) 30.5 (23.9–69.0) 35.7 (18.8–69.6) 32.0 (18.9–62.2) 33.4 (18.3–60.5)
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respectively. When hot/sweet paprika is considered, 73.0% of
original variance is explained by the three first PCs. The most
contributing elements to PC1 are Al, B, Ca, Cu, Fe, Mn, P and Zn. Na
and Sr contributes to PC2 and P to PC3. Most of samples from
Murcia have positive scores of PC1 and PC2, being distinguishable
from paprika from Extremadura, distributed at lower values of PC2
(Fig. 1D).

The models to be built in this work are numbered as 1 for
global comparison, 2 for sweet paprika, 3 for hot paprika and 4 for
hot/sweet paprika. Data matrix is divided in a training set (75% of
the cases) to build the models and a test set (25%) to compute their
classification performance. In the case of MLP-ANNmodels, as they
are trained by back propagation, a verification set is needed and
then the division is 50%, 25% and 25% for training, verification
and test sets, respectively. All the proposed models were cross-
validated by means of a stratified delete-a-group jackknifing
(DAGJK) [29]. This procedure consists of obtaining a number of
replication models (nine in this case) with the same percentage of
training and test cases in each considered classes. The cases
included in each set are randomly changed for each replication
model. The models are built and optimized with the training set
and the test set is used to obtain the classification performance.

Finally a mean classification performance is obtained for each class
and overall. The classification performance is evaluated by means
of sensitivity (SENS) and specificity (SPEC) [30], being SENS the
percentage of cases of a class correctly classified into this class and
SPEC the percentage of cases not belonging to a class that are
correctly classified as not pertaining to this class.

LDA computes discriminant functions as a linear combination
of the original variables in order to differentiate the considered
classes by minimizing the within-class and between-class ratio
[31]. In this case, LDA models have been obtained by means of
forward stepwise analysis, including only the most differentiating
variables to compute the discriminant function. When global
comparison is performed, the model (LDA1) is built with all the
variables except K. In the case of sweet paprika, Sr and Zn are not
used in the model (LDA2). Al, Na, Ni and P are not used in the
model (LDA3) to differentiate hot paprika, whilst only Al is not
used in the case of hot/sweet samples (model LDA4). As can be
seen in Fig. 2A, corresponding to model LDA1, samples from
Extremadura are distributed at negative values of the discriminant
function whilst paprika samples from Murcia do at positive values,
although some overlapping is observed. The distribution of data
when the geographical origin comparison is performed by types is

Fig. 1. Scatterplot of paprika in the space formed by the three first PCs for (A) global comparison; (B) sweet paprika; (C) hot paprika and (D) hot/sweet paprika.
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different in the case of sweet and hot paprika, Fig. 2B and C,
respectively. It can be seen that Murcia samples are distributed at
negative values of the discriminant function and samples from
Extremadura do at positive values. In the case of sweet type the
classes appear well differentiated, but hot paprika samples over-
laps. Hot/sweet paprika samples appear separately, being cases
from Murcia distributed at positive values of DF and cases from
Extremadura at negative values. The results of the models are
shown in Table 5, sweet and hot/sweet paprika present SENS and
SPEC of 100%, whilst hot paprika perform with overall SENS
an SPEC of 91%. Samples corresponding to this type seem to be
responsible of the results obtained for the global LDA model, with
SENS of 95% and SPEC of 94%. These results could be improved by

the use of other pattern recognition techniques and in this way
SVM, SIMCA and ANN are applied.

SVMs compute an optimal separation hyperplane by means of
an iterative algorithm learning the sample distribution in the
boundaries of each considered class. The complexity of the model
is controlled by a penalty error function in order to avoid over-
training [32]. In this study, the SVM models are obtained by using
the same variables selected by previous LDA and the results can be
seen in Table 5. The results are similar to those obtained by LDA
in the case hot/sweet paprika. SENS obtained for Murcia sweet
paprika is slightly lower when SVMs are used instead of LDA. The
same occurs in the case of hot paprika, but also SENS for samples
from Extremadura decays to 83%. For this reason, results of SVM in
the case of global comparison do not improve those obtained
by LDA.

SIMCA performs a PCA analysis for each considered class
determining the number of PCs needed to describe the structure
of each class. The boundaries of each class are computed and
objects are classified in a group if they fall into the n-dimensional
boxes limited by these boundaries. SIMCA is a soft modeling
technique, so that samples can be included or not included into
a class and also can fall in the confluence space of the classes [33].
The results of this technique can be projected in a Cooman's plot
(Fig. 3). For global comparison and hot paprika there are a number
of samples from Murcia and Extremadura in the confluence space
of both classes (bottom left corner), what decreases SPEC for both
groups (Table 5). In the case of sweet and hot/sweet paprika there
is no any sample assigned to both classes at the same time and
SPEC results are comparable to those obtained by LDA and SVM.
Cases not pertaining to any of the classes lead to lower SENS
values.

Linear models, such as LDA, linear SVM and SIMCA, do not solve
the classification problem and therefore MLP-ANNs are applied.
MLP-ANN are feedforward multilayer networks consisting on

Fig. 2. Distribution of the samples according to their scores for the computed discriminant function for (A) global comparison; (B) sweet paprika; (C) hot paprika and
(D) hot/sweet paprika.

Table 5
SENS and SPEC results (%) obtained by the built differentiation models for (1) global
comparison, (2) sweet paprika, (3) hot paprika and (4) hot/sweet paprika.

Model Extremadura Murcia Overall

SENS SPEC SENS SPEC SENS SPEC

LDA1 9873 9177 9177 9873 9574 9475
LDA2 100 100 100 100 100 100
LDA3 93712 89713 89713 93712 91710 91710
LDA4 100 100 100 100 100 100
SVM1 9474 8779 8779 9474 9173 9174
SVM2 100 9877 9877 100 9973 9974
SVM3 83712 87718 87718 83712 8579 8578
SVM4 100 100 100 100 100 100
SIMCA1 8476 8476 8776 6477 8673 7475
SIMCA2 76715 100 89715 100 83710 100
SIMCA3 78720 88720 89716 35721 85711 59719
SIMCA4 91715 100 73724 100 86712 100
MLP-ANN1 9972 9974 9974 9972 9972 9972
MLP-ANN2 100 100 100 100 100 100
MLP-ANN3 9677 9974 9974 9677 9874 9774
MLP-ANN4 100 100 100 100 100 100
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neurons arranged in layers. An input layer read the values of the
variables used in the model. In a hidden layer, each neuron
performs a weighted sum of their inputs and transforms it with
an activation function to produce their output [34]. A output layer
computes the probability of pertaining at each class. In this case,
the variables used for each comparison are the same selected by
LDA and logistic functions are used as activation function in the
hidden layer. In the case of global comparison the model is built
with architecture 13:11:2. This model performs better than linear
ones with SENS and SPEC of 99% for both classes. For sweet
paprika 100% of samples appear correctly assigned to their
corresponding class using a 12:7:2 structure. Hot paprika is
classified with overall SENS of 98% and SPEC of 97%. In this case
the network architecture presents 10 neurons in the input layer,
7 in the hidden layer and 2 in the output layer. When the
comparison is carried out with only hot/sweet paprika, 100% of
performance efficiency is obtained with a 13:9:2 network. In light
of such results, MLP-ANN models improve the results of linear
models and can be used to differentiate between paprika samples
from the two considered PDO, with independence of their
pungency.

4. Conclusions

A method to perform the determination of Al, B, Ca, Cu, Fe, K,
Mg, Mn, Na, Ni, P, Pb, Sr and Zn in paprika samples has been
proposed. Different mixtures of acids to perform the mineraliza-
tion have been tested, being the mixture of perchloric and nitric
acids which leads to adequate recoveries for all the considered
elements and also presents practical advantages. The method

performance has been checked considering the absence of matrix
effect, trueness, repeatability, intermediate precision, linearity and
limits of detection and quantification. The obtained results show
the adequacy of the method to carry out the determination of the
studied elements in paprika samples in their expected levels of
concentration. ICP-OES presents the advantage of being a multi-
elemental determination technique, with relatively short time of
analysis, leading to an easy implementation of the proposed
methodology in quality control laboratories.

The contents of Al, B, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Sr
and Zn has been determined in paprika samples from the two Spanish
PDO, Extremadura and Murcia. Using the contents of these elements
and applying LDA, SVM, SIMCA and MLP-ANN classifications models
have been obtained to differentiate the two Spanish PDO of paprika.
A classification efficiency of 9972% has been achieved with the
MLP-ANN model. The results obtained prove the usefulness of the
metallic profile to differentiate PDOs of paprika and the applicability of
this methodology in the quality control of this product.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.talanta.2014.04.025.
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